
4/2/2015 Writing shell scripts - Lesson 6: Shell Functions

http://linuxcommand.org/lc3_wss0060.php 1/9

Shell Functions
As programs get longer and more complex, they become more difficult to design, code, and
maintain. As with any large endeavor, it is often useful to break a single, large task into a series
of smaller tasks.

In this lesson, we will begin to break our single monolithic script into a number of separate
functions.

To get familiar with this idea, let's consider the description of an everyday task -- going to the
market to buy food. Imagine that we were going to describe the task to a man from Mars.

Our first top-level description might look like this:

1. Leave house
2. Drive to market
3. Park car
4. Enter market
5. Purchase food
6. Drive home
7. Park car
8. Enter house

This description covers the overall process of going to the market; however a man from Mars will
probably require additional detail. For example, the "Park car" sub task could be described as
follows:

Validation failed. Please retry or wait till
W3C allows validation again

X

4/2/2015 Writing shell scripts - Lesson 6: Shell Functions

http://linuxcommand.org/lc3_wss0060.php 2/9

1. Find parking space
2. Drive car into space
3. Turn off motor
4. Set parking brake
5. Exit car
6. Lock car

Of course the task "Turn off motor" has a number of steps such as "turn off ignition" and "remove
key from ignition switch," and so on.

This process of identifying the top-level steps and developing increasingly detailed views of
those steps is called top-down design. This technique allows you to break large complex tasks
into many small, simple tasks.

As our script continues to grow, we will use top down design to help us plan and code our script.

If we look at our script's top-level tasks, we find the following list:

1. Open page
2. Open head section
3. Write title
4. Close head section
5. Open body section
6. Write title
7. Write time stamp
8. Close body section
9. Close page

All of these tasks are implemented, but we want to add more. Let's insert some additional tasks
after task 7:

7. Write time stamp

4/2/2015 Writing shell scripts - Lesson 6: Shell Functions

http://linuxcommand.org/lc3_wss0060.php 3/9

8. Write system release info
9. Write up-time

10. Write drive space
11. Write home space
12. Close body section
13. Close page

It would be great if there were commands that performed these additional tasks. If there were,
we could use command substitution to place them in our script like so:

#!/bin/bash

sysinfo_page - A script to produce a system information HTML file

Constants

TITLE="System Information for $HOSTNAME"
RIGHT_NOW=$(date +"%x %r %Z")
TIME_STAMP="Updated on $RIGHT_NOW by $USER"

Main

cat <<- _EOF_
 <html>
 <head>
 <title>$TITLE</title>
 </head>

 <body>
 <h1>$TITLE</h1>

4/2/2015 Writing shell scripts - Lesson 6: Shell Functions

http://linuxcommand.org/lc3_wss0060.php 4/9

 <p>$TIME_STAMP</p>
 $(system_info)
 $(show_uptime)
 $(drive_space)
 $(home_space)
 </body>
 </html>
EOF

While there are no commands that do exactly what we need, we can create them using shell
functions.

As we learned in lesson 2, shell functions act as "little programs within programs" and allow us to
follow top-down design principles. To add the shell functions to our script, we change it so:

#!/bin/bash

sysinfo_page - A script to produce an system information HTML file

Constants

TITLE="System Information for $HOSTNAME"
RIGHT_NOW=$(date +"%x %r %Z")
TIME_STAMP="Updated on $RIGHT_NOW by $USER"

Functions

4/2/2015 Writing shell scripts - Lesson 6: Shell Functions

http://linuxcommand.org/lc3_wss0060.php 5/9

system_info()
{

}

show_uptime()
{

}

drive_space()
{

}

home_space()
{

}

Main

cat <<- _EOF_
 <html>
 <head>
 <title>$TITLE</title>
 </head>

 <body>

4/2/2015 Writing shell scripts - Lesson 6: Shell Functions

http://linuxcommand.org/lc3_wss0060.php 6/9

 <h1>$TITLE</h1>
 <p>$TIME_STAMP</p>
 $(system_info)
 $(show_uptime)
 $(drive_space)
 $(home_space)
 </body>
 </html>
EOF

A couple of important points about functions: First, they must appear before you attempt to use
them. Second, the function body (the portions of the function between the { and } characters)
must contain at least one valid command. As written, the script will not execute without error,
because the function bodies are empty. The simple way to fix this is to place a return
statement in each function body. After you do this, our script will execute successfully again.

Keep Your Scripts Working
When you are developing a program, it is is often a good practice to add a small amount of code,
run the script, add some more code, run the script, and so on. This way, if you introduce a
mistake into your code, it will be easier to find and correct.

As you add functions to your script, you can also use a technique called stubbing to help watch
the logic of your script develop. Stubbing works like this: imagine that we are going to create a
function called "system_info" but we haven't figured out all of the details of its code yet. Rather
than hold up the development of the script until we are finished with system_info, we just add an
echo command like this:

4/2/2015 Writing shell scripts - Lesson 6: Shell Functions

http://linuxcommand.org/lc3_wss0060.php 7/9

system_info()
{
 # Temporary function stub
 echo "function system_info"
}

This way, our script will still execute successfully, even though we do not yet have a finished
system_info function. We will later replace the temporary stubbing code with the complete
working version.

The reason we use an echo command is so we get some feedback from the script to indicate
that the functions are being executed.

Let's go ahead and write stubs for our new functions and keep the script working.

#!/bin/bash

sysinfo_page - A script to produce an system information HTML file

Constants

TITLE="System Information for $HOSTNAME"
RIGHT_NOW=$(date +"%x %r %Z")
TIME_STAMP="Updated on $RIGHT_NOW by $USER"

Functions

4/2/2015 Writing shell scripts - Lesson 6: Shell Functions

http://linuxcommand.org/lc3_wss0060.php 8/9

system_info()
{
 # Temporary function stub
 echo "function system_info"
}

show_uptime()
{
 # Temporary function stub
 echo "function show_uptime"
}

drive_space()
{
 # Temporary function stub
 echo "function drive_space"
}

home_space()
{
 # Temporary function stub
 echo "function home_space"
}

Main

cat <<- _EOF_

4/2/2015 Writing shell scripts - Lesson 6: Shell Functions

http://linuxcommand.org/lc3_wss0060.php 9/9

 <html>
 <head>
 <title>$TITLE</title>
 </head>

 <body>
 <h1>$TITLE</h1>
 <p>$TIME_STAMP</p>
 $(system_info)
 $(show_uptime)
 $(drive_space)
 $(home_space)
 </body>
 </html>
EOF

© 2000-2015, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

